m基于ENM-LAP模型的自组织网络平均最短路径长度matlab仿真分析

简介: m基于ENM-LAP模型的自组织网络平均最短路径长度matlab仿真分析

1.算法仿真效果
matlab2022a仿真结果如下:
936ef7a9a70d575a7a254ffde81d551f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
079dfe41bb0d7129a9eafa7988039fa1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
71a7f4e7b7d1b326a72b095a64e741e0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
移动自组织网络不但具有终端能量受限、无线信道状况受链路距离影响等特点,还具有节点位置的选择存在偏好的规律。本节建立基于节点位置偏好的网络拓扑演进模型,并利用复杂网络理论对其进行分析。网络拓扑结构产生过程如下:

1)增长:网络初始状态时,网络中存在少量的节点,设此时的节点数为 ,这 个节点根据彼此之间的距离和自身的覆盖范围,与周边的节点进行连接。这里,假定每个节点都与自己所有的邻居相连,这样做的目的有两个,第一是降低初始网络的复杂度,使初始节点的连接规则较为简单,第二是尽量避免孤立节点的存在,使网络处在连通图的状态。

   当网络完成初始化后,在每一个时间步向网络中增加一个新节点。新节点的加入是存在节点对位置的偏好性的,即节点将遵照某种网络特点,在一定范围内选择相应的位置出现于网络中。通常定义的网络特点有节点度、节点介数、节点能量或其他物理特性等。在本文中考虑节点度作为节点加入网络的依据。式(1)给出新节点加入网络时遵循的概率表达式:

db4f04eb6e27dfde60813baf5bfc1dbe_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   在演化过程中假定网络中任意两个节点之间都可以进行直接或者间接通信,也就是说网络在构建完成的时候是连通的,没有孤立节点的存在。这个假设是合理的,举例来说,在广场上布设一个移动自组织网络,网络中的任意一个人都至少会与一个人进行联系,假如他不与任何人联系,那么他就不属于这个网络。另外假设网络规模足够大,而节点加入网络时的连边较小,在节点的覆盖范围内能够有大于个节点存在。

3.MATLAB核心程序
```m0 = 9;
m = 8;
N = 1000;
SCALE = 500;%
%通信半径
Radius= 150;%

alpha = 0.5;
Ec = 1/1000;
E0 = 1;

%%
%局域网偏好的网络拓扑
L = 30;
X = rand(1,m0)SCALE;
Y = rand(1,m0)
SCALE;
fed= [];
for i = 1:m0
for j = 1:m0
dist(i,j)=sqrt((X(i)-X(j))^2+(Y(i)-Y(j))^2);
end
end

indx = 0;
NN = 0;
while NN < N
NN
indx = indx + 1;rng(indx);
%计算度
if indx == 1
X2 = X;
Y2 = Y;
end

  degree1 = [];
  for i = 1:length(X2)
      xx= 0;
      for j = 1:length(Y2)
          dist=sqrt((X2(i)-X2(j))^2+(Y2(i)-Y2(j))^2);
          if dist <= Radius & dist > 0
             xx= xx + 1; 
          end
      end
      degree1(i) = xx;
  end    

  degree2 = [];
  di      = [];
  for i = 1:length(X2)
      xx= 0;
      for j = 1:length(Y2)
          dist=sqrt((X2(i)-X2(j))^2+(Y2(i)-Y2(j))^2);
          if dist <= Radius & dist > 0 & dist<= L
             xx= xx + 1; 
          end
          di(i,j) = dist;
      end
      degree2(i) = xx;
  end    

  %计算节点剩余能源
  if indx == 1
     E(1:m0) = E0 - Ec;
     tmps    = E;
  else
     E       = tmps - Ec;
     E       = [E,E0 - Ec];
     tmps    = E;
  end

  for i = 1:length(X2)
      d      = di(i,:);
      fed(i) = E(i)^alpha*(1-d(i)/sum(d))^(1-alpha);
  end
  for i = 1:length(X2)
      Para2(i) = fed(i)*degree1(i)/(sum(fed.*degree1));%公式3.3连接8个概率
  end
  %选择概率最大的m个进行连接
  [Vp,Ip] = sort(Para2);
  Mindx   = Ip(end-m+1:end);

.........................................................

  X2    = [X2,Xnew];
  Y2    = [Y2,Ynew];
  NN    = length(X2);

  %平均最短路径长度
  Eavg       = mean(E);
  n          = xx;
  ms         = m;
  t          = 0.005*indx;
  k          = mean(degree1);
  Pked       = 1/(m0+t)*(2*n*Eavg./fed*ms/k);
  dt         = 0.1;
  theta      = sum(Pked);

  kikj       = ms^2/Eavg*exp(fed/(2*n*Eavg)*dt);

  gamma      = 0.5772;
  LLs        = exp(1/log(theta))*((-1*log(kikj)-log(ms/2)-gamma)/(log((N))+log(ms/2)) + 3/2);

  Lens(indx) = mean(LLs);

end

ix = find(abs(Lens)>1000);
Lens(ix)=0;
%平滑
for indx=1:length(Lens)
if indx <= 256
Lens2(indx) = mean(Lens(1:indx));
else
Lens2(indx) = mean(Lens(indx-256:indx));
end
end
figure;
plot(Lens2,'b','linewidth',1);

if L==30
save R0.mat Lens2
end
if L==20
save R1.mat Lens2
end
if L==15
save R2.mat Lens2
end
if L==10
save R3.mat Lens2
end
```

相关文章
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
22天前
|
机器学习/深度学习 算法
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。
|
29天前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
|
1月前
|
机器学习/深度学习 算法 5G
基于DNN深度神经网络的OFDM+QPSK信号检测与误码率matlab仿真
本内容展示了基于深度神经网络(DNN)的OFDM-QPSK信号检测算法在Matlab2022a中的仿真效果。通过构建包含多层全连接层和ReLU激活函数的DNN模型,结合信号预处理与特征提取,实现了复杂通信环境下的高效信号检测。仿真结果对比了传统LS、MMSE方法与DNN方法在不同信噪比(SNR)条件下的误码率(BER)和符号错误率(SER),验证了DNN方法的优越性能。核心程序涵盖了QPSK调制、导频插入、OFDM发射、信道传输及DNN预测等关键步骤,为现代通信系统提供了可靠的技术支持。
27 0
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容包含时间序列预测算法的相关资料,涵盖以下几个方面:1. 算法运行效果预览(无水印);2. 运行环境为Matlab 2022a/2024b;3. 提供部分核心程序,完整版含中文注释及操作视频;4. 理论概述:结合时间卷积神经网络(TCN)与鲸鱼优化算法(WOA),优化TCN超参数以提升非线性时间序列预测性能。通过因果卷积层与残差连接构建TCN模型,并用WOA调整卷积核大小、层数等参数,实现精准预测。适用于金融、气象等领域决策支持。

热门文章

最新文章

http://www.vxiaotou.com